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X-ray Diffraction from Microcrystalline Random Layer Structures 
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A theoret ical  s tudy  is given of the X- ray  scat ter ing from a powder composed of circular planes of 
atoms. When  the planes are grouped into parallel layers, the effects result ing from the t angen t  plane 
approximat ion  (TPA)  are determined for the basal (00/) reflections and the role of rotat ional  and 
displacement  disorder are determined for both  001 and hkO reflections. When  applied to the 002 peaks 
from par t ia l ly  graphit ized carbons, i t  is found t h a t  use of the T P A  predicts a value of the inter layer  
spacing which is a t  worst  2 % too small. Analyt ica l  expressions for the small angle scat ter ing follow 
as a special ease of the 00l reflections. As expected, the  00l max ima  are appreciably altered when 
plane displacements become comparable wi th  plane radii, while the shape of hkO maxima  are essen- 
t ia l ly  determined by  the rota t ional  disorder alone. 

Introduction 

Warren (1941) has obtained a quanti tat ive inter- 
pretation of the X-ray diffraction from random layer 
lattices in which layers of a crystallite are parallel to 
one another, but  random displacements and rotations 
may occur between adjacent layers. I t  is the purpose 
of this paper to extend this work to the case where 
partial  ordering of the relative plane positions is 
considered. Also, the effects of using the tangent plane 
approximation in the case of basal reflections is con- 
sidered. The materials to which these results are most 
directly applicable are the partially graphitized car- 
bons such as carbon black. 

Use is made of the general powder pat tern theorem 
for randomly oriented powders (Warren & Averbach, 
1950) which gives P, the total  diffracted power in 
electron units associated with a given hkl diffraction 
maximum, in terms of the intensity distribution in 
reciprocal space. Let So and s be unit vectors in the 
direction of the incident and diffracted beams respec- 
tively. We let S = (s - s0)/2 = hlbl +h2b~ + haba where 

) 

Fig. 1. Reciprocal lattice volume element  
in polar coordinates. 

blb~ba are the reciprocal lattice translation vectors. 
Then 

p -  MjD223I I I  sin 0 Va 

= I P(20)d(20) 

where M is the number of crystals in the sample, 
j is the hkl multiplicity, D is the sample to detector 
distance, I is the diffracted intensity in electron units 
per crystal, Va is the volume of the three-dimensional 
unit cell, and P(2 0) is the distribution of power with 
scattering angle. Finally, if we want the power per 
unit solid angle subtended by the detector we have 

J(2 0) =P(20)/(2~D 2 sin 2 0).  (1) 

Referring to Fig. 1, we can write the volume element 
of reciprocal space in polar coordinates using S =  
2 sin 0/2 as the radius vector. 

d Vr = dhl dh2 dha/V~ 
cos 

Osinadocd(20) . (2) sin ocdadS = 2gS  2 

Thus we find for J(2 0) upon combining (1) and (2), 

M~2~ f : I (~ ,  J(20) - 8 sin 2 0 $2 S) sin c~dc~. (3) 

In  (3) it is assumed tha t  all possible rotations of the 
crystal about the ba axis have been averaged over, 
so I depends only upon a and S. 

Diffraction by an array of c ircular  layers  

Consider the intensity diffracted by a group of N 
circular layers each of radius R. The N layers are con- 
sidered to be parallel to one another, but  are allowed 
to be displaced parallel to themselves and to be 
rotated about a perpendicular axis through the center 
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of the plane. The layers are numbered  from one layer  
called the reference layer.  The center of the j t h  layer  
is displaced by  a vector  Pl relat ive to the  center of 
the reference layer.  

:Following Warren ' s  notat ion,  a~laet are the  lat t ice 
vectors in the  plane of the j t h  layer,  as is the  inter- 
p lanar  vector  perpendicular  to a~az. The in tens i ty  
from a crystal  of N layers is given in electron units  by  

I = ~v 2't ~ exp {i2~S.  (m~alt+mgag.j+ja~+p~)} 
]= 1 ruling. 

(4) 
where F~ is the two-dimensional  s t ructure  factor in 
the  j t h  layer.  

The sum over m~m~ can be approx imated  by  an 
integrat ion over the  area of the plane (James, 1954). 
Thus 

.~  exp (i2~S.(mtal~+mgag~)} 
m 1 rn  2 

= exp {i2~r(S-H~) r}rdrdq~ 
~ = o  ~ = o  " A ~  ( 5 )  

where H~ = hb~l + kb~ +lb~, A~ is area of the  two- 
dimensional  cell, b~¢b~jba denote the vectors reciprocal 
to a~¢ae¢a~. The vector  He locates the  lat t ice point  
hkl in the  reciprocal lat t ice of the  j t h  layer.  The 
rota t ion of the j t h  layer  about  its center is given by  

Fig. 2. Orientat ion coordinates of the  j t h  layer 
for hkO reflections. 

the  angle ~t defined in Fig. 2. The evaluat ion of (5) 
depends upon whether  hkO or 001 reflections are con- 
sidered. 

(i) 001 reflections 
In  this case all Ht = lba and H .  r = 0 in equat ion (5). 

Eva lua t ing  the  integral  in (5) and subst i tu t ing in (6) 
gives us 

4z~R ~" J1 (2gRS sin o~) ~ 
~00, =-~-~. 2~-~;  ~ 

I x ~ F I  exp { i2~S. ( ja~+p~)  . (6) 

This Bessel funct ion coefficient has a m a x i m u m  at  
= 0 which is ve ry  sharp compared with the var ia t ion  

of/v~ with c~ near  ~ =0 .  Therefore we m a y  take  the  
$'¢'s out  of the  summat ion  and evaluate  them at  a = 0. 

If  we label the  reference plane as number  1, then  
we note p l = 0  by  definition. To get the  average 
in tens i ty  from crystals with a given or ientat ion rela- 
t ive to S, we mus t  average over the distr ibutions of pC. 
Thus  we find 

<I00 > = l"" I 
x P(pa)~adQadva...P(p~v)Q~vd~vdV~v (7) 

where P(pj), the  displacement  dis t r ibut ion function, 
is the  probabi l i ty  per uni t  area of the  center of layer  j 
being displaced a distance eJ in the direction Uj. If  we 
assume each layer 's  displacement  is independent  of the 
other  displacements,  

4zR  2 Jl(27~RS sin ~) 21F(~ = 0)[2 
<Iooz> = A--~-¢ 2~RS sin 

× [ N "4- 2g (sin ( N - 1 )  S ~a3 c°s ~ ) 
- • cos NzeSa3 cos c~ 

sin 7~Sa3 cos c~ 

+g2(Sin2(N-1)rcSa~c°sc~\ s i -~  ~ - ~  c-~ c¢ - ( N -  1))1 (8) 

where 

g = exp {i2r~S.p}P(p)pd~dy. 
y=O 0=0 

I f  p=O for all layers, g=  1 and the square bracketed 
term in 8 approaches the usual expression, 

sin 2 ~V~Sa~ cos ~/sin* ~ cos ~ .  

We m a y  go from (I00z> to I(c~, S) in equat ion (3) by  
inclusion of absorpt ion and polarization factors giving 
US 

J (20)  = K l (I00z> sin ~ d ~  (9) 

where K = ¼MIA. (1 + cos 2 2 0) for unpolarized radia-  
t ion and absorpt ion factor A. I t  is clear t h a t  we can 
go no fur ther  unless the  displacement  dis t r ibut ion 
function, P(p),  and  thus  g is specified. 

(a) No displacement  disorder, g = 1 
We use approximate  expressions to avoid the  need 

for numerical  integrations,  viz. 

(Jl(x)/x) 2 ~_ ¼ exp ( -xe /4 )  
sin 2 Nx/sin 2 x "~ N ~ exp (-_N2y2/7c) (10) 

where y = x - x 0 ,  x0 being the nearest  value of x where 
sin x = 0 .  Wi th  these approximat ions  the in tegrat ion 
of (9) is s t ra ightforward giving us 

Kg2R4 
J00z(20) - N21F(a = 0)12.~f(B, C,S) (11) 

A~ 

where B = ~N2a~, C = 7~2R 2, and the form of ~ f  depends 
upon the  pa ramete r  q=B/C. 
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q < l  
1 

= 2((l_q)Cs~). ~ [exp {-B(S-H)~}G(d) 

--exp {-B(S+H)2}G(h)] (12) 
where 

f G(x) = exp ( - x  ~') oexp (v~)dv, d = (c/l-q)½ 

x [q t t+(1-q)S] ,  h = (c/1-q)½[qH-(1-q)S]. 

Tables of G(x) are given by Mitchell & Zemansky 
0934). 

q = l  

£f- 

q > l  

1 
4CSH [e~p { -  B(S-  ~)~} 

- e x p  ( - B ( S +  H)~}] (13) 

1 
2((q-- 1)CS~)½ [exp { -  B ( S -  H)2}H (x) 

+exp {-B(S+H)e}H(y)] (14) 
where 

S:ex  H(z) = exp (z~) ( - u  2) du = exp (zg). :~½ 

x (error function of z) 

• = [c/(q - l)]~ [(q- 1 )s - qH] 

y = [c/(q- 1)]½ [ (q-  1)S +qH]. 

In the limit of very large R, the square bracketed 
factor in equation (8) varies slowly with c~ so it can 
be evaluated at c~ = 0 and removed from the a integra- 
tion. Then instead of integration over the spherical 
shell of Fig. 1, the integration can be taken over the 
space between two p~anes tangent to the spheres at 

=0. This constitutes the tangent plane approxima- 
tion (TPA) given fh'st by M. yon Laue (1926)• Con- 
sidering g=  1 we obtain 

¢L-CaTpa= exp {-B(S-H)~}/(4CS~). (15) 

We now apply these results to the 002 diffraction 
maximum in partially graphitized carbons. A nominal 
value of 3-4 ~ is taken for aa. One finds the following 
approximations are valid to within 2% for the 002 
maximum : 

1 
G(d) = 2-~, exp (-B(S+H)e}G(h) = 0 

H ( y )  = . e , ~ p  ( y ~ )  - ~ . 

These approximations give us for equations (12), (13), 
(14). 

1 

~q~ = oZ'~,va" 1 + (H - S)/S 

= .o~frp,l" S/H 

( ~c~½ 
ze= z e ~  \~- i -  ~/" &~. [1 +erf(~)]. 

(12a) 

(13a) 

(14a) 

Equations (12a) to (14a) show the TPA results to 
be multiplied by functions which shift the peak 
toward higher 2 0 angles. This shift remains even after 
multiplying J(20) by S2/ff • as suggested by Fra~klln 
(1950)• The amount by which the peak maximum is 

O 
displaced can be found by setting ~-S (S2~f)= 0. This 
gives us 

q<_ l S M - H _  a~ 
H 2xe2R 2 

S M - H  a~ 1 / ( q -  1)\½ q> 1 
H 2~2R2 + 2-N [ ] \ ~ - - /  

x [2]x[+~ln(l+erfx)]s= n (16) 

where SM is the actual peak maximum and H is the 
TPA peak maximum. :For carbons, if R_>5 J~,* 
SM-H/H is < 2 %  for q_<l. :For q > l  a n d R = 5  /~, 
approximately the same peak shift (2%) is produced 
for values of N up to 7. If Aas is the error made in 
measuring as by use of the TPA, 

]Aas/as] = ](SM-- H)/HI • 

In conclusion regarding the 002 Bragg maximum 
/or carbon, the use of the TPA will result in a peak 
displacement of 2% of H or less toward lower angles. 
Thus values of as deduced from the position of the 
maximum will be too small by 2% or less. Graphs of 
equations (12a) through (14a) showed changes in the 
peak shapes which are negligible from an experimental 
viewpoint. These conclusions are in agreement with 
those of Patterson (1939) who found the TPA was 
in ~e~ good ug~eement ~,ith the uccura~e in~egra%ion 
for spherical particles except at very small values of S. 

(b) The effect of displacement disorder, g < 1 
We now consider the effect of displacement disorder 

on the 001 peak. If we assume that  P(9) is constant 
up to a maximum displacement radius Y, we find 
from (8) that  g=2.Jl(27~SY sin ~x)/(27~SY sin a). Re- 
placing Jl(x)/x by ½ exp ( - lx2) as in equation (10), the 

integration of equation (9) results in 

1 
4CS 2 

[ ( 2 sin(N-1)~Sas 
× N + 1 + Y2/2R2 sin gSas 

+ 

• cos gNSas) 

1 (sin~(N-1)~Sa3 )1 
1+ Y y R ~ \  sVn~7~-~ - ( N - I )  . (17) 

If Y, the maximum displacement radius, is comparable 
with R, then we see that  the 001 coherent interplanar 

* For carbonized coals, values of R as small as 2.9 A have 
been reported by Diamond (1958). For carbon blacks, values 
of R in excess of 5 /~ are more usual. (L. Alexander, private 
communication.) 
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Fig.  3. The  e f fec t  of d i s p l a c e m e n t  d i so rde r  on  t he  002 g r a p h i t e  r e f l ec t ion  in tens i t ies .  (a) 2V= 2; Y =  0 
(no d i s p l a c e m e n t  d isorder )  a n d  Y = R .  (b) N----6; Y = 0  a n d  Y = R .  

scattering represented by the last two terms in the 
bracketed expression of (17) is appreciably decreased, 
and becomes zero for large Y. This is the result of the 
coherent scattering dropping off more rapidly with c~ 
when Y is not zero. 

Fig. 3 gives plots of equation (17) for N = 2  and for 
N = 6 when Y = 0 and when Y = R. I t  is seen from the 
figure that  the peak shape is altered most for N =  2. 
There is a substantial increase in the background 
scattering and a decrease in the peak height above 
background. If the apparent increase in background 
is subtracted, the peak breadth at hMf-maximum 
remains unchanged. The peak shape becomes less 
affected as N increases and the third term of (17) 
begins to dominate. As h r increases, the major affect 
of displacement disorder on the experimental results 
is a decrease in the 001 peak intensity which is mul- 
tiplied by a factor (1+ Y~/R~) -1 and an increase in 
the scattering from independent planes. From these 
results it is seen that  experimentally one has great 
difficulty in distinguishing between (a) a small number 
of crystals having very little displacement disorder 
and (b) a large number of crystals having a substantial 
displacement disorder. While other displacement dis- 
tributions would lead to modifications of equation (17), 
it is improbable that  the main features would be 
modified. 

(ii) hkO reflections 
The methods used for the 001 reflection are also 

applicable to the hkO reflections. Here the rotational 
disorder represented by )9 is found to dominate. 
Assuming no rotational order so all values of yj are 

equally probable, the displacement disorder is found 
to have a negligible effect on the peak shapes if R 
exceeds 5 J~. The results of Warren (1941) which cor- 
respond to independent scattering by the individual 
layers are essentially obtained whether g=  1 or g = 0. 

(iii) Small angle scattering 
The derivation of equations ( l l)  to (14) derived 

for the case of no displacement disorder made no 
assumptions regarding the magnitude of H. Therefore, 
in contrast to the tangent plane approximation, these 
expressions may be directly applied where H =  0 and 
h r > 1. In the absence of intercrystalline interference, 
we find for J ,  the 000 power per unit area 

q< 1, J=Jorexp  ( - B S 2 ) .  G(x)/(x), x= ~RS(1 -q)½ (18) 

q= 1, J=Jor  exp ( -  BS  2) (19) 

q > 1, J = Jor exp ( - BSg). H(y)/y, y = ~ R S ( q -  1)½ (20) 

where J0 is the power per unit area at S = 0 

r =  IF2(a = 0)I/IF2(S= 0)1 

and q, G(x), and H(y) are defined in equations (12) 
to (14). At very small values of S the above expressions 
for _N > 1 all reduce to 

J /Jo=r  exp {-4~2S2/3}(R~/2 + (Na8)2/4~) . 

In equation (10) the integrated area of sins Nx/sin 9. x 
was matched by using h r2 exp (-_N2x2/~). If instead 
one matches the curvature at x = 0  we find the ex- 
ponent is replaced by (N ~'- 1)x2/3 and 
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10-~ ~ 10 -2 

~ ' ~ \ \ \  10 -1 

/o  t - . -.\,, 
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Fig.  4. Small  angle scat ter ing f rom cylinders in the  absence of inter-part icle  interference.  -- x -- x Malmon (1957) 
results; - -  present  results, equat ions  (18)-(21). v is Malmon 's  shape parameter ,  q-- ~v 2. 

J / J o = r  exp ( 4 ~ $ 2 a ~ / 1 2 .  exp (-492S2/3 .R~), (21) 

where Ro = (R2/2 + T2/12) ½ is the radius of gyration for 
a circular cylinder of radius R and thickness T = Na3.  
Equation (21) is to be compared with the result of 
Guinier (1955) which gives 

J / J o  = exp ( -  4~2S2/3. R02). 

At the very small angles where these results are com- 
parable, the factor r exp (-t-42S2a~/12) is equal to 1 
and Guinier's result follows. 

In Fig. 4 the equations (18) to (20) are compared 
with the results of numerical integration by Malmon 
(1957). The factor r has been left at 1 in these graphs 
since the structure factor changes slowly compared 
with the exponential factor. Aside from duplication of 
the oscillatory behavior, it is clear the present results 

yield useful analytical approximations to the numerical 
curves. Where v departs appreciably from ], the agree- 
ment is especially satisfactory. 

For the case where N =  1 one finds equation (18) is 
appropriate providing B and q are set equal to zero. 
Thus for independently scattering layers o~ radius R 
we have 

G (~RS) 
J / J o  = r (reRS) " (22) 

This equation is also plotted in Fig. 4. 

Conclus ion 

Expressions are obtained (equations (8), (9)) for the 
diffraction from a powder of crystals made up of 
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paral lel  circular layers subject  to rotat ional  and  dis- 
p lacement  disordering. 

1. Using the Gaussian approximat ion  for the inter- 
ference functions obtained (equation (10)) the 002 
reflections for mierocrystal l ine carbon were investi-  
gated. 

(a) In  the absence of displacement  disorder, use of the 
tangent  plane approximat ion  for interpret ing the 
002 diffraction m a x i m u m  results in a small  
systemat ic  error in evaluat ing the  in terp lanar  
spacing, as. For  a layer  radius in excess of 5 /~, 
the value of as using the T P A  will be too small  
by  less t han  2%. 

(b) While  rota t ional  disorder plays a negligible rSle 
in the  002 diffraction, displacement  disorder can 
seriously affect the  peak profile. As the  displace- 
ment  disorder increases, the 002 in tens i ty  dimin- 
ishes toward zero. The effect of one type of dis- 
p lacement  disorder is evaluated.  I t  is found tha t  
exper imenta l ly  one would f ind a negligible dif- 
ference between a given number  of crystals 
showing no displacement  disorder and a larger 
number  of crystals showing appreciable displace- 
men t  disorder. Thus exper imenta l  est imates of the 
fraction of layers stacked in parallel  clusters will 
be a sensitive funct ion of the displacement  dis- 
order present  in those clusters. 

(c) Expressions for small  angle scattering (000 Bragg 
max imum)  can be deduced direct ly from ex- 

pressions for the  002 profile because the T P A  was 
not  used. The low angle equations give useful 
approximat ions  to results obtained by  numerica l  
in tegrat ion of the actual  interference functions. 

2. Resul ts  of a s imilar  analysis  on the  hk0 m a x i m a  
showed tha t  r andom rotat ional  disorder by  itself 
effectively suppresses in ter layer  interference effects in 
carbon for R > 5 A. 
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suggestions by  Prof. B. E. Warren  and  Dr L. Alex- 
ander.  Par t ia l  support  for this  work from the  Office 
of Ordnance Research, U.S. Army,  is grateful ly  
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On the crystal structure of aureomycin hydrochloride,  By S. I-~I_ROKAWA, Y. 0KAYA, F. M. LOV'ELL 
and R. P~.Pr~s~Y, X-ray and Crystal Structure Laboratory, Department of Physics, The Pennsylvania State 
University, University Park, Pa., U . S . A .  

(Received 29 April  1959) 

A structure analysis of aureomycin hydrochloride, 
C22H2aN2OsC1.HC1, was undertaken in order to clarify 
certain stereochemical features of this member of the 
tetracyclin family. The salt crystallizes in the ortho- 
rhombic system with four chemical units in the cell, 
the dimensions of which are 

a=11.20,  b=12.89, c=15.47 ~ ,  

with space group P212121 (Dunitz & Leonard, 1950; 
Pepinsky & Watanab@, 1952). Crystalline terramycin 
hydrochloride is strikingly isomorphous (Pepinsky & 
Watanabd, 1952). 

X-ray data were collected as multi-film Weissenberg 
exposures, using Cu Ka radiation, with intensities visually 
estimated. The structure analysis was initiated by 
establishment of the chlorine positions through a sys- 

tematic study of a three-dimensional sharpened Patterson 
function. Starting from these positions, numerous iterated 
structure-factor and electron-density calculations on the 
IBM 704 and X-RAC were made, with contributions of 
lighter atoms included as they became discernible in the 
electron-density maps. Interpretations of these were 
aided by bounded projections along the a and b axes. 
All the atomic coordinates thus obtained were subjected 
first to least-squares and then differential-synthesis 
refinement, using the automatic refinement program of 
Vand & Pepinsky (1958) on the IBM 704. A three- 
dimensional error index of 0.154 was obtained for the 
final set of coordinates. 

The aureomycin ion is found to possess the structure 
as proposed on chemical grounds (Hochstein et al., 1953), 
with the exception of one significant stereochemical 


